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Abstract— We present a method that finds locomanipulation
plans that perform simultaneous locomotion and manipulation
of objects for a desired end-effector trajectory. Key to our
approach is to consider an injective locomotion constraint
manifold that defines the locomotion scheme of the robot and
then using this constraint manifold to search for admissible
manipulation trajectories. The problem is formulated as a
weighted-A* graph search whose planner output is a sequence
of contact transitions and a path progression trajectory to
construct the whole-body kinodynamic locomanipulation plan.
We also provide a method for computing, visualizing, and
learning the locomanipulability region, which is used to effi-
ciently evaluate the edge transition feasibility during the graph
search. Numerical simulations are performed with the NASA
Valkyrie robot platform that utilizes a dynamic locomotion
approach, called the divergent-component-of-motion (DCM), on
two example locomanipulation scenarios.

I. INTRODUCTION

To exploit the full capabilities of humanoid robots in
human-centered environments, it is critical that the robots
are able to efficiently interact with objects designed for
human use. However, much of the success with locomanipu-
lation of objects has been seen with wheeled-based mobile-
manipulators [1], [2], [3], [4]. For instance, [4] shows robust
manipulation of kinematically constrained objects such as
doors and cabinets. The success of wheeled-bases is unsur-
prising as the manifold for locomotion and manipulation is
continuous which simplifies the search for feasible plans.
However, robots with limbs rely on contact transitions to
perform locomotion. As breaking and making contacts are
discrete decisions that introduce discontinuity and can even
be combinatorial when finding an appropriate contact mode
schedule [5], it is non-trivial to identify a sequence of
dynamically feasible contact transitions during manipulation.

One way to address the discontinuity issue with coupled
locomotion and manipulation of limbed robots is to treat
the floating degrees of freedom (DoF) of the robot to be
controllable, for instance by constraining it to SE(2), then
solving the locomanipulation problem as one would with
a wheeled-base robot and finding a satisfying quasi-static
sequence of footsteps [6]. A more recent approach treats
the end-to-end locomanipulation problem as rearrangement
planning, however it also only outputs quasi-static solutions
[7]. The difficulty of handling contact transitions while
performing manipulation is the reason that whole-body ma-
nipulation of objects by limbed robots are often performed
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Fig. 1. A top-view visualization of the considered locomanipulation
problem definition. Given a manipulation constraint end-effector path/s
described by f(s), the goal is to find a progression trajectory s(t) ∈ [0, 1],
with t being time, and a sequence of contact transitions (li, ri) such that
the resulting whole-body trajectory q(s(t)) also satisfies the prescribed
locomotion manifold. A solution is a feasible locomanipulation plan.

by maintaining the same stance configuration throughout the
entire manipulation trajectory. For example, in [8], bi-manual
manipulation of a humanoid robot is performed with the
same stance configuration. In [9], locomotion, locomanip-
ulation, and manipulation zones are constructed to approach
the object in the manipulation zone. Here, the manipulation
task is also performed with a fixed stance. Furthermore, all
the previously mentioned approaches are only able to output
quasi-static solutions.

In contrast, we present an approach that is able to find
dynamic locomanipulation plans with kinodynamic whole-
body solutions. This is done by first defining the locomotion
constraint manifold and then finding manipulation plans that
satisfy the original locomotion constraint. This is equivalent
to finding manipulation trajectories in the nullspace of the
locomotion. As a motivating example, we consider the loco-
motion constraint manifold to be the task-space trajectories
generated by the dynamic locomotion approach called the
divergent-component-of motion (DCM) [10] that is used
on the NASA Valkyrie robot [11] with a momentum-based
whole-body controller [12]. Note that our approach is invari-
ant to an injective locomotion scheme (see Sec. II-B) which
results to producing kinodynamic trajectories automatically
if the locomotion scheme is dynamic. Additionally, if the
locomotion approach has stability properties, the resulting
whole-body trajectories will also have these properties.

Next, we formulate locomanipulation as the following
problem. Given an SE(3) end-effector trajectories for the
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hands, the goal is to find a progression trajectory for the
hands with a satisfying sequence of footsteps such that the
resulting whole-body trajectory also satisfies the locomotion
constraint manifold (See Fig. 1). We solve this as a low-
dimensional graph search problem with a weighted A* as
the planner. To efficiently compute feasible edge transitions
that can be manipulation, locomotion, or locomanipulation
trajectories, we introduce a method for learning the lo-
comanipulability regions of the robot with the prescribed
locomotion constraint manifold with a neural-network based
classifier. The solution of the planner is a kinematically
feasible trajectory that respects joint limits. Kinodynamic
satisfiability is also achieved if the external disturbance of the
manipulation task can be sufficiently rejected or compensated
by the low-level whole-body controller. Finally, we show that
we are able to generate fast locomanipulation plans on two
example problems.

Our paper has two key contributions. First, we intro-
duce a novel method to compute, visualize, and learn the
locomanipulability regions, defined as the region in which
both manipulation and locomotion are possible. Second, we
introduce a fast weighted A* planner formulation which
uses the learned locomanipulation regions to find satisfying
locomanipulation plans.

A. Related Works on Locomanipulation

While the problem of finding locomanipulation plans
is discussed here, there are other recent works on
locomanipulation-related problems such as [13], [14], [15],
[16]. In [13], a taxonomy of locomanipulation poses is
presented as well as an example analysis of required pose
transitions to climb stairs. [15] provides a ground work
for understanding environment affordances for locomanip-
ulation. [16] extends [13] and [15] by using data to auto-
generate a pose transition graph and testing their affordance
classifications on a mobile manipulator with a wheeled base.

We previously described existing quasi-static approaches
that used search based algorithms to solve locomanipulation
problems. However, our idea of dynamic locomanipulation
by finding manipulation trajectories in the nullspace of
locomotion has been previously pursued in [17]. In their
work, primitives for both locomotion and manipulation are
generated beforehand. Then, an offline RRT-based planner
is used to find locomanipulation plans in the intersection of
the primitives’ image spaces. Our work differs from them in
a few ways. First, we have a different problem and planner
formulation for finding locomanipulation plans. For instance,
we consider manipulating objects with predefined manipula-
tion trajectories (e.g. as described by affordance templates
(ATs) [18]). Next, because their method consists of a search
over the nullspace of the prioritized motion primitive, pure
locomotion or pure manipulation phases are not considered
in their framework, which is not a limitation in our planner.
We believe our planner formulation is faster as their search
approach is performed offline for an unspecified amount of
computation time. Another work, [19], uses a search based
algorithm for planning contact transitions for the purposes

of locomotion and manipulation for many types of robots.
However, the coupled locomotion and manipulation problem
are not considered. More recently, [20] presents a method for
addressing the coupled locomotion and manipulation prob-
lem as we do here. However, their results are limited in two
ways. First, they operate on low-dimensional (DoF) systems
while we solve our locomanipulation problem with a full
humanoid. Second, they do not consider joint limits, while
our approach automatically handles kinematic constraints.
A complete kinodynamic planner utilizing SQP methods
was presented in [21], but it is prohibitively expensive and
requires good initial conditions with computation times on
the order of several minutes. In contrast, our problem for-
mulation outputs candidate solutions in less than 5 seconds
and complete validated solutions within one minute.

II. APPROACH OVERVIEW

To find locomanipulation plans, the key idea is to first
consider that the locomotion scheme for the robot is provided
ahead of time. This constrains the possible locomotion tra-
jectories that the robot can execute. Then, locomanipulation
is achieved by finding admissible manipulation trajectories
that satisfy both the original locomotion constraint and the
desired manipulation end-effector trajectory. We consider
limbed robots of humanoid form, but the ideas presented
here can also work with other multi-limbed robots.

A. Problem Definition

The locomanipulation problem is formulated as follows:
given a desired end-effector path trajectory, f(s), the goal
is to find a manipulation progression variable trajectory for
s ∈ [0, 1] as a function of time, t, which defines s(t),
and a footstep sequence trajectory such that the resulting
whole-body trajectory q(s(t)) satisfies the end-effector path
trajectory f(s(t)) and the locomotion constraint manifold.
For instance, suppose the robot’s task is to open a door (See
Fig. 1). The desired end-effector trajectory for the hand can
be defined in terms of the trajectory of the handle as the
door opens. This is similar to how ATs [18] or task space
regions (TSRs) [8] would define the robot interface to the
door. At any point in time, the robot may decide to pull on
the door, take a footstep, or do both at the same time. For
example, an action which pulls the door is a progression of
the s variable from si to si+1. We call this an increment of
the manipulation variable by some ∆s.

B. Defining the Locomotion Constraint Manifold

Existing locomotion schemes in limbed robots for example
are performed with quasi-static, capture-point [22], divergent
component of motion (DCM) [10], time-velocity-reversal
(TVR) [23], or centroidal-momentum based planners [24].
These high-level planners output center-of-mass (CoM) tra-
jectories (and sometimes momentum trajectories) for a given
sequence of contact modes. Consequently, to satisfy these
centroidal trajectories with contact constraints, task space tra-
jectories for the end-effectors such as the feet, palm, pelvis,
etc, also have to be constructed by an accompanying planner.
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Fig. 2. A visualization of (a) the manipulation reachability region of the right hand, (b) the locomotion contact transition reachability region, (c) the
locomanipulation region in the hand end-effector space, and (d) the locomanipulation region in the contact transition space. Green and red regions indicate
valid and invalid regions respectively. In (a) and (b), valid regions are reachable end-effector poses and contact transitions from the initial configuration
respectively. For (c) and (d), valid regions indicate the locomanipulability region from the initial configuration. The transparent left foot in (c) and (d)
indicates the starting stance. In (c), the locomanipulability region is the region in which different hand poses can be kinematically maintained while the
same contact transition is performed. While in (d), the locomanipulablity region is the region in which different foot contact transitions can be performed
while maintaining a fixed hand pose. Reachability and locomanipulability regions are generally in 3D, but the above visualizations are only performed on
a 2D slice. Notice that the locomanipulability regions are always a subset of the corresponding reachability regions, i.e. (c) ⊆ (a) and (d) ⊆ (b).

Additionally, these high-level planners which constitute the
locomotion scheme are typically injective. That is, for a given
sequence of contact modes and an initial condition of the
robot configuration q, q̇, it will always output the same task
space trajectories, x(t) for the CoM and end-effectors. For
humanoid walking these task space trajectories could be

xL(t) = [xCOM(t), xleft
foot(t), x

right
foot (t), xpelvis(t)]

T , (1)

with the task spaces defined such that xCOM ∈ R3, xfoot(t) ∈
SE(3), and xpelvis ∈ SO(3). Additionally these tasks will
have corresponding locomotion task Jacobian,

∆xL(t) = JL(q(t))∆q(t) (2)

Thus, the locomotion scheme provides a constraint mani-
fold, Eq. (2), that needs to be satisfied when finding admis-
sible manipulation plans.

C. Defining the Locomanipulability Region

We define the locomanipulability region to be the area in
which both locomotion and manipulation tasks are feasible.
By constraining the locomotion scheme, we are able to test
whether a particular manipulation trajectory (e.g. a hand end-
effector trajectory) satisfies a given locomotion manifold.
Equivalently, a manipulation constraint can be initially set
and used to check whether the original locomotion plan is
still valid. When both manipulation and locomotion trajecto-
ries are feasible, locomanipulation becomes possible. From
the problem definition, the manipulation constraint can be
described in terms of s, namely:

∆xM(s) = JM(q(s))∆q(s), (3)

where the subscript M indicates manipulation tasks in SE(3)
with its corresponding Jacobian.

Numerically checking whether a manipulation trajectory
xM(s) is admissible for a given locomotion manifold xL(t) is

checked with a series of inverse-kinematics (IK) that simulate
the whole-body controller on the robot (See Sec. III-B).

Similar to reachability regions [25] for manipulation
(Fig. 2a) and locomotion (Fig. 2b), we can define the
locomanipulability region as a region in space for which both
locomotion and manipulation tasks are possible. This region
can be defined either in the end-effector space (Fig. 2c) or
the contact transition space (Fig. 2d). For the former, if
the contact transition is fixed (ie: the robot is set to take
a left footstep), there will only be a small region in the
end-effector space for which manipulation trajectories are
possible. For the latter, suppose the robot’s right hand is to
be constrained in a particular pose in SE(3), then the region
on the floor for which footstep transitions are possible will be
the locomanipulation region defined in the contact transition
space. (Fig. 2d).

III. IMPLEMENTATION DETAILS1

A. Locomotion Manifold Parameters

The following task space trajectories for CoM, feet and
pelvis are based on a simplified behavior of The Institute for
Human Machine & Cognition’s (IHMC) walking controller
on NASA’s Valkyrie robot. For a given foot contact sequence
and initial condition of the CoM state, the DCM generates a
CoM trajectory based on a specified swing foot time, double
support transfer time, and final settling time. At the beginning
and end of the DCM trajectory, the desired virtual repellant
point (VRP) is set at the support polygon center, so that the
beginning and ending of each walking trajectory will have the
CoM at the support polygon center. In addition to the CoM
trajectory, satisfying task space trajectories for the feet and
pelvis still need to be set. Throughout the walking trajectory
the pelvis orientation is always the average of the orientation
of the feet using spherical linear interpolation (SLERP)[26].

1https://github.com/stevenjj/icra2020locomanipulation
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The average of the feet orientation and position is referred
to as the midfeet frame.

xpelvis(t) = SLERP(0.5, xleftfoot(t), x
right
foot (t)). (4)

If at the start of the DCM trajectory the pelvis orientation is
not equal to midfeet frame orientation due to manipulation
tasks, a hermite quaternion curve [27] is used to interpolate
the pelvis orientation before the robot begins to walk.

For the swing foot position, We use two hermite curves
with boundary conditions at the apex of the foot swing. At
the apex of the swing, the velocity of the foot is set to be
the average velocity of the swing foot defined as

ẋfoot(
tswing

2
) =

∆xfoot
tswing

, (5)

where ∆xfoot is the total distance traveled by the swing foot
and tswing is the swing time. The swing foot orientation is
constructed with a single hermite quaternion curve with zero
angular velocity boundary conditions. Finally, if the foot is
in stance or in double support, its position and orientation
are held constant.

B. IK Configuration Trajectory

For a given desired locomotion and manipulation task
space trajectories, a feasible IK trajectory with these two
tasks simultaneously implies that the desired locomanipula-
tion trajectories are feasible. For a given footstep contact
sequence, we obtain a locomotion task space trajectory
xL(t) with duration ∆T . Similarly, for a given increment
of the manipulation variable, ∆s, we obtain a manipulation
task trajectory xM(s). The locomotion and manipulation
trajectories can be parameterized by an indexing variable
i ∈ {0, 1, ..., N}, a discretization factor N , and making the
following substitutions

t(i) = to +
i∆T

N
, (6)

s(i) = so +
i∆s

N
, (7)

with to and so the initial values of t and s at i = 0. We
can then create the locomanipulation task by stacking the
tasks and their Jacobians with xLM(i) = [xTL (i), xTM(i)]T

and JLM(i) = [JT
L (i), JT

M (i)]T . We also add a posture joint
position task JP with task errors ∆xP in the the torso which
helps condition the trajectories to be near a desired nominal
pose. Then, the IK configuration trajectory, which mirrors
the controller behavior of the robot, is performed using the
following equations.

∆xLM(i) = xLM(i)− xLM(q(i)), (8)

∆q(i) = kp · JLM(i)∆xLM(i) + (JPNLM)(∆xP ), (9)
q(i+ 1) = c(q(i) + ∆q(i)), (10)

where X = (A−1XT )(XA−1XT )† is the dynamically con-
sistent pseudoinverse [28] with A being the inertia matrix for
a robot configuration q(i) and † indicates the pseudoinverse.
NLM = (I − JLMJLM) is the nullspace of the locomanip-
ulation task, with I the identity matrix. The task error at

TABLE I
CLASSIFIER FEATURE VECTOR

Type Feature Name Dim
R1 Stance Leg 1
R1 Manipulation Type 1

SE(3) Pelvis Starting Pose 6
SE(3) Swing Start and Land Foot Pose 12
SE(3) Left and Right Hand Poses 12

TABLE II
EDGE FEASIBILITY CHECK WITH AN INTEL I5-9600K CPU

Transition feasibility check type Time per edge (seconds)
IK Trajectory (2.11 ± 0.13)

Neural Network Classifier (1.44 ± 0.18) e− 3

the i-th index is defined by Eq. (8) in which xLM(q(i)) is
the current task space poses given the robot configuration.
The configuration change is obtained using Eq. (9) with
kp a scalar gain, and a configuration update is performed
with Eq. (10) with c(·) being a clamping function that
ensures joint limits are not exceeded. Finally, Eqs. (8)-(10)
are iteratively repeated. If an iteration causes the task error
to increase, backtracking on kp is performed by updating
it with k∗p = βkp with β = 0.8. The trajectory converges
when all the ∆xLM (i) are driven to 0. The trajectory fails
to converge when the norm of ∆q(i) goes below 1e-12.

C. Learning the Locomanipulability Region

When deciding whether or not a contact transition and
a progression variable ∆s change is possible, instead of
running the full IK trajectory to check for convergence, we
instead learn a classifier that learns the result of the IK
trajectory for the given task space inputs. Similar to the
approach presented in [29] that used a neural network for
classifying contact transition feasibility, the classifier used
here will learn the trajectory feasibility but instead with
a manipulation constraint. The classifier is a 3-layer fully
connected network with 100 ReLu units per layer [30] and
a sigmoid activation function for binary classification. The
network is trained with the keras framework [31].

The input vector, p(v1, v2; s), used for the neural network
classifier can be seen in Table I. The input vector is a
function of the two graph vertices (v1, v2) as described in
Sec. III-D, but it is parameterized by the location of the
end-effector along the manipulation trajectory, f(s). The
stance leg is a binary variable that indicates which leg is
the stance leg (left, right). Similarly, the manipulation type
indicates the manipulator end-effectors (left, right, or both
hands). The remainder of the features are the 6D poses
of the specified robot body part with respect to the stance
foot. As there are two choices for the swing leg and three
choices for manipulation type, there are six possible contact
transitions to consider. For each contact transition type, the
training data is generated by randomly generating the upper
body joint configurations, and randomly selecting a foot
landing location w.r.t the stance foot as the origin. The
pelvis pose is also randomly generated in the convex hull
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of the feet. For a particular manipulation type, we fix the
manipulator pose and solve a series of IKs (Sec. III-B) that
simulate the robot’s whole body controller to check if the
locomanipulation trajectory is feasible.

The output of the classifier is a prediction score, y(·) ∈
[0, 1], that indicates the feasibility of the queried transition.
Since the classifier is only trained on data that represents
locomanipulation with a fix manipulator pose (∆s = 0), ad-
ditional steps are taken to use the classifier for manipulation-
only decisions and locomanipulation decisions with a moving
manipulator pose (∆s 6= 0). When considering the manip-
ulation only case, the manipulation trajectory is discretized
into Nm equidistant points and a step in place trajectory
is queried from the neural network for each point. This
method assumes that if the discretized points are in the
locomanipulation region then the entire trajectory must be as
well. The lowest score is then taken as the feasibility score.
For the locomanipulation with a moving manipulator pose
case (∆s 6= 0), a similar discretization is used but instead
of testing a step in place, the specified footstep from v1 to
v2 is tested at each of the points. Once again, the lowest
score is taken as the feasibility score. A succinct description
for the feasibility score is written in Eq. (11) below. Table II
shows that the classifier evaluates edge transitions more than
three orders of magnitude faster than an IK approach on a
CPU-based implementation only.

n(v1, v2) =

{
y(p(v1, v2; s)), ∆s = 0

min
i=1,...,Nm

y(p(v1, v2; si)), ∆s 6= 0.
(11)

D. Weighted A* Formulation

Finding locomanipulation plans is formulated as a low-
dimensional graph search problem, G = (V,E). Each vertex
v ∈ V is a locomanipulation state v = (s, xfeet, yfeet, θfeet) ∈
R7, where s is the manipulation variable state, and (·)feet are
the states of the left and right feet. The states are discretized
from the starting position of the robot. We assume that
the starting position of the robot with f(s = 0) is such
that the configuration is in the locomanipulation region.
Only a finitely sized lattice is considered by defining a
kinematic reachability limit from a certain radius (e.g. 1.5m)
from f(s). An edge e ∈ E in the graph is a transition
between two vertices v1 and v2 which can have a ∆s
change, which progresses the manipulation variable, and/or
a foot contact transition. This enables the planner to make
a decision between performing manipulation, locomotion, or
locomanipulation trajectories.

1) Edge Cost: A contact transition between two vertices
has the following edge transition cost.

∆g(v1, v2) =ws · (1− s) + wstep+ (12)
wL · r(v2) + wd · (1− n(v1, v2)),

where ws encourages the progression of the manipulation
trajectory, wstep is a scalar cost of taking a footstep, wL

penalizes states that deviate from a suggested body path
r(v2), and wd penalizes edge transitions that have low
feasibility computed with n(v1, v2). If the classifier is not

used, wd is zero. The suggested body path can be an output
from the same high-level planner that produced the end-
effector trajectory for f(s). Here we first compute T s0

foot,
which is the fixed transform between the initial end-effector
pose, f(s = 0), and the starting stance foot pose. For a given
s, we then transform the initial stance to the corresponding
pose of f(s) using T s0

foot. Then r(v2) is computed as the
norm of the difference between a foot landing location in v2
and the aforementioned transformation.

Since the planner is successful when it finds a feasible
path to a state such that s = 1, notice that maximizing
for feasibility is not necessarily the best course of action
as the planner can mindlessly perform contact transitions
that are feasible. Therefore, a trade-off has to be performed
between progressing the manipulation variable, s, attempting
a transition using the suggested body path r(v2), deciding
whether or not to make a footstep transition at all, or
choosing a vertex that maximizes for feasibility.

2) Edge Transition Feasibility: To increase efficiency
when not using the classifier, all neighbors are assumed to
be feasible until the vertex is extracted from the priority
queue. When the assumed feasible vertex is extracted from
the queue, edge validity is performed by testing if a feasible
transition exists from v1 to v2 by solving the IK configuration
trajectory between two vertices. If the edge between v1 and
v2 is not feasible, the next vertex in the priority queue
is processed. On the other hand, if the classifier is used,
neighbors undergo an edge feasibility check. A feasibility
score of n(v1, v2) > 0.5 is labeled as a valid edge, while
edges with lower scores are pruned from the graph.

3) Graph Search: The weighted A* is used as the planner
[32] for the graph search problem to produce sub-optimal but
faster plans than A*. The following heuristic h(v) with scalar
weight wh brings s to 1 with

h(v) = wh · (ws(1− s)). (13)

When wh = 1, the solution of the planner is the optimal
result produced by the A* as the heuristic is admissible [33]
since Eq. (13) will be equal to the first term of Eq 12. Similar
to [29], we use an ε-greedy strategy [34] to aid escaping
cul-de-sac scenarios by randomly evaluating a vertex in the
priority queue with probability ε (0 < ε < 1).

Note that the classifier-based planner can make mistakes
on feasible and unfeasible transitions. Thus, when it out-
puts a candidate solution consisting of a sequence of edge
transitions, a reconstruction step is performed in which the
full IK trajectory is computed to validate the candidate plan.
A complete plan is returned only if the candidate plan
converged. If it did not converge, the A* planner is re-run
again with an updated table that marks the invalid edge to
be infeasible and the validated edges to be feasible. The
remaining edges use the transition feasibility computed by
the classifier from the previous run. This table ensures that
the classifier-based planner saves computation time and does
not repeat the mistake. To be clear, this reconstruction step
is not needed if the classifier is not used or if the classifier
is trusted to capture the locomanipulation region well.
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Fig. 3. A 3D view of Valkyrie opening the door (a) and pushing a cart (d). (b) and (e) show a top-view of the center-of-mass trajectory(CoM), the
manipulation end-effector trajectory f(s) with s = 0 and s = 1 indicating the start and ending end-effector poses respectively, and lj and rj indicate the
j-th left and right footsteps respectively. In (d) note that s = sl = sr . (c) and (f) show the manipulation progression variable trajectory s(t) as a function
of time, and a visualization of the footstep contact transitions using the z-height of the left and right footsteps (zl, zr respectively).

TABLE III
PLANNER PERFORMANCE WITH AND WITHOUT THE CLASSIFIER

Planner Type Time to Goal Vertex (secs) Reconstruction Time (secs) Total Planning Time (secs)
Door Opening Cart Pushing Door Opening Cart Pushing Door Opening Cart Pushing

With the Classifier 4.78s 3.32s 28.31s 25.41s 33.10s 28.73s
Without the Classifier 38.29s 32.24s 0.0 0.0 38.29s 32.24s

IV. RESULTS AND DISCUSSIONS

We provide two examples in which locomanipulation is
achieved for a given end-effector task space trajectory. Fig. 3
shows a figure of Valkyrie opening a door and performing a
bimanual push of a cart. Trajectories are only visualized with
RViz [35]. Table III shows that utilizing the locomanipula-
bility classifier can find goal vertices or candidate plans in
less than 5 seconds. While utilizing a GPU implementation
can further reduce the time to generate candidate plans,
the reconstruction step for confirming the full trajectory
feasibility is the bottleneck as it adds 25-30s to validate the
plan. Still, our approach is faster than alternative humanoid
locomanipulation approaches ([17], [21]) as discussed in
Sec.I-A. Additionally, a better IK implementation should
decrease the overall planning time for both planner types. A
criticism is that the advantage of the classifier-based planner
is largely lost due to the reconstruction or validation step
needed. Other works that employ a similar classifier-based
approach to planning ([29], [36]) assume that the candidate
plan is the final plan. Therefore, this step is optional for
a well-trained or highly trusted classifier. Furthermore, the
classifier’s performance largely depends on how well the

classifier learned the locomanipulability regions. As the
classifier is used to reduce the total IK computations, the re-
construction step guarantees kinodynamic feasibility for the
returned plan. Overall, we have demonstrated a fast approach
for finding locomanipulation plans by finding admissible ma-
nipulation trajectories in the locomotion constraint manifold.
Our approach is also invariant to an injective locomotion
scheme. While our approach produces kinodynamic plans,
our method relies on the user or another high-level planner to
provide end-effector plans with an optional suggested body
path. The full-body plans can be immediately used on the
robot by using its existing API as done previously in [37],
but a robust implementation would require online replanning
of hand trajectories (e.g [4]) and recovery procedures if
deviations in forces or kinematic trajectories have been
detected due to tracking and/or modeling errors.
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